Volume 24

Number 18

 $\overline{}$

August 28, 1985

Inorganic Chemistry

0 Copyright 1985 by the American Chemical Society

Communications

Models of Zinc-Containing Proteases. Rapid Amide Hydrolysis by an Unusually Acidic Zn²⁺-OH₂ Complex¹ *Sir:*

The elucidation of the mechanism of peptide hydrolysis by the zinc metalloenzyme carboxypeptidase A (CPA) has been hampered by an ambiguity in the catalytic role of the Zn^{2+} . The primary function could involve either carbonyl polarization, in which the Zn^{2+} serves as a Lewis acid to bind the carbonyl and to make it more susceptible to nucleophilic attack, or the formation of a zinc-bound hydroxide, which would allow a more potent hydroxide nucleophile to be present at neutral $pH²$ Zinc-carbonyl mechanisms for CPA have **been** in favor, since it is this geometry that is present in the 2.0 **A** resolution X-ray structure of CPA with the poor substrate Gly-Tyr.³ Further, the kinetic pK, of $6.1-7.0$ observed for CPA⁴ has been associated with the deprotonation of Glu-270 rather than the ionization of a zinc-bound water.⁵

We describe here the synthesis and characterization of a rigid zinc-amide complex in which a zinc-bound water is positioned perpendicular to the plane of an amide bond. Zinc-promoted hydrolysis of the amide bond was **observed** to occur in this complex with a rate enhancement of $10⁷$. Furthermore, both titrimetric and kinetic data indicate a pK_a near 7 for the zinc-bound water.

To assess the viability of a metal-bound hydroxide in amide hydrolysis, we have chosen the specific alignment between the amide and metal-bound hydroxide shown in Figure 1 since this geometry allows a favorable interaction of the reactant groups. Previous Cu²⁺ complexes of 1⁶ and 2,⁷ which incorporate this

 $1 - M^2$ -OH₂: X = $-CO_2$ $2-M^{2}$ -OH₂: X = -CH₂N(CH₃)₂

- (a) Presented in part at the 186th National Meeting of the American
Chemical Society, Washington, DC, 1983. (b) Abstracted from: Olson,
J. R. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 1983.
- Galdes, A. *Inorg. Biochem.* **1982, 3, 268-313.** Lipscomb, W. **N.;** Hartsuck, J. A.; Reeke, G. N., Jr.; Quiocho, F. A.;
- Bethge, P. H.; Ludwig, M. L.; Steitz, T. A.; Muirhead, H.; Coppola, J. C. *Brookhaven Symp. Biol.* **1968,** *No. 21,* **24-90.**
- (4) (a) Auld, D. S.; Vallee, B. L. Biochemistry 1970, 9, 4352–4359. (b)
Auld, D. S.; Vallee, B. L. *Ibid.* 1971, 10, 2892–2897. (c) Bunting, J.
W.; Kabir, S. H. Biochem. Biophys. Acta 1978, 527, 98–107.
- **(5)** Lipscomb, W. **N.** *Terrahedron* **1974,** *30,* **1725-1732.**

Figure **1.** Optimum geometry for nucleophilic attack by M-OH on an amide acyl carbon.

Scheme I

geometry in conformationally mobile systems, have led to rate enhancements of up to 10^6 for amide hydrolysis at neutral pH and 50 °C. More modest accelerations of 10³ and no acidic protons were observed for Zn^{2+} . The reaction pathway in these complexes requires a chair-boat equilibrium before the rate-determining step, since an X-ray crystal structure of $1-Cu^{2+}$ -Br·H₂O has shown the azalactam moiety in a chair *(C)* rather than a boat *(B)* conformation.*

We have synthesized the tridentate ligand **3,** as shown in Scheme I,⁹ to eliminate the chair-boat equilibrium from the reaction pathway. The bicyclic azalactam portion of the free ligand is expected to prefer a chair-chair conformation, in analogy with known bicyclo[3.3.l]nonane derivatives.1° Although **3** can potentially bind a metal ion in a number of geometries, coordination as shown in $3-M^{2+}$ -OH₂ forces the adoption of a boat-chair conformation *(B,C)* to alleviate severe transannular steric interactions in 3-M²⁺-OH₂(C,C).¹¹ We have compared the selective I3C line-broadening effects of added Cu2+ to solutions of **1** and **312** and have found that the amide carbonyl carbon of **3** is much

- (6) Groves, J. T.; Dias, R. M. *J. Am. Chem. SOC.* **1979,** *101,* **1033-1035.**
-
- **(7)** Groves, J. **T.;** Chambers, R. R. *J. Am. Chem. Soc.* **1984,106,630-638. (8)** Olson, **J. R.** Ph.D. Thesis, The University of Mchigan, Ann Arbor, **MI, 1983.**
- (9) Intermediates **4, 5, and 6 all gave satisfactory elemental analyses (C,** H,N) and spectral properties. Samples of 3 had satisfactory ¹H and ¹³C NMR spectra.
- **(10)** (a) Peters, J. A.; Baas, J. **M.** A.; van de Graff, B.; van Bekkem, H. *Tetrahedron* **1978,34, 3313-3323.** (b) Jeyaraman, R.; Jawaharshingh, C. B.; Avila, *S.;* Ganapathy, K.; Eliel, E. L.; Manoharan, M.; Morris-Natscke, *S. J. Heterocycl. Chem.* **1982,** *19,* **449-458.**
- (11) Approximate values for the stability constants of Zn^{2+} and Cu^{2+} complexes with 3 were graphically determined from potentiometric data to be 1.5×10^4 and 7.1×10^5 , respectively.

more sensitive to added Cu²⁺ than the respective carbon of 1 (Figure **2).** This is consistent with the proposed solution structures for $1-M^{2+}$ -OH and $3-M^{2+}$ -OH₂, since the distance between the paramagnetic Cu^{2+} and the amide carbonyl is significantly shorter in the latter.

A pH-rate profile for the amide hydrolysis of $3-Zn^{2+}-OH₂$ at 50 OC over the pH range **5.2-7.4** is shown in Figure **3.13** The sigmoidal pH-rate curve is similar to that of $1-Cu^{2+}-OH_2$ and 2-Cu²⁺-OH₂^{6,7} and can be understood in terms of hydrolysis occurring through both a zinc-bound water form (k_1) and a zincbound hydroxide form (k_2) in which $3-Zn^{2+}$ -OH reacts 10 times faster than $3\text{-}Zn^{2+}\text{-}OH_2$. The base-catalyzed process (k_3) slightly improves the fit at high pH values^{6,7} although its contribution is small. These processes take the form of eq 1, in which K_w is the

$$
k_{\text{obsd}} = k_1 \left[\frac{a_{\text{H}}}{K_{\text{app}} + a_{\text{H}}} \right] + k_2 \left[\frac{K_{\text{app}}}{K_{\text{app}} + a_{\text{H}}} \right] + k_3 \frac{K_{\text{w}}}{a_{\text{H}}} \left[\frac{K_{\text{app}}}{K_{\text{app}} + a_{\text{H}}} \right] \tag{1}
$$

autopyrotolysis constant for water ($pK_w = 12.97$, 50 °C, 0.5 M $NaClO₄$) and K_{app} is the apparent ionization constant required to fit the data. The ratios in brackets represent the mole fractions of the respective zinc species. **A** least-squares fit of the data to eq 1 gave $k_1 = 6.48 \times 10^{-7} \text{ s}^{-1}$, $k_2 = 7.14 \times 10^{-6} \text{ s}^{-1}$, $k_3 = 1.10$ **X** 10^{-4} M⁻¹ s⁻¹, and pK_{app} = 7.01. Comparison of k_{obsd} at pH 7 with the estimated rate constant for the base hydrolysis of 3 at pH 7 ($k = 2.8 \times 10^{-13}$ s⁻¹)¹⁴ indicated a *rate enhancement of 1.4* \times 10⁷ for amide hydrolysis by Zn²⁺ at 50 °C. This is in marked contrast to the small or even inhibitory rate enhancement of model systems that emulate a "carbonyl polarization" geometry between metal ion and amide carbonyl.¹⁵

Titrations of the Zn^{2+} and Cu^{2+} complexes of 3 at 50 °C showed two equivalence points, attributable to first the neutralization of two ligand protons and then to the titration of a metal-bound water. The pK_a values for the metal-bound water in 3-Zn²⁺-OH₂ and 3-Cu2+-OH2 were found to be extraordinarily low, **7.1** and **6.6,** respectively. Furthermore, both titrations were completely reversible. The pK_a of the zinc-bound water must be considered an estimate, however, since the amount of metal-bound water titrated normally corresponded to 0.6-0.8 equiv of base.¹⁶

- **(12)** For discussion of Cu2+ broadening effects, cf: (a) Dillon, K. B.; Rossotti, F. J. C. *J. Chem.* **Soc.,** *Dalton Trans.* **1973, 1005-1013.** (b) Voelter, W.; Sokolowski, G.; Weber, U.; Weser, U. *Eur. J. Biochem.* **1975,58, 159-166.** (c) Espersen, W. G.; Martin, R. B. *J. Am. Chem.* **Soc. 1976,** 98, 40–44.
(13) Amide hydrolysis was also found to occur in homogeneous solutions
- from pH 7.4 to 7.8. However, unambiguous rate constants could not be calculated in this region due to problems in obtaining reasonable *A,* values.
- **(14)** The pseudo-first-order rate constant *k,* for the base hydrolysis of 3 at pH 7, was estimated from the second-order base hydrolysis constant $(k_{OH} = 2.6 \times 10^{-7} M^{-1} s^{-1})$ and hydroxide concentration ([OH⁻] = 1.0 × 10^{-5.97} M, pK_w = 12.97, 50 °C, 0.5 M NaClO₄); i.e., $k = k_{OH}$ [OH⁻].
- (15) (a) Fife, T. H.; Squillacote, V. L. J. Am. Chem. Soc. 1977, 99,
3762–3769. (b) Fife, T. H.; Squillactoe, V. L. *Ibid.* 1978, 100,
4787–4793. (c) Tang, C. C. Ph.D. Thesis, Columbia University, 1978. (d) Breslow, **R.;** Fairweather, R.; Keana, J. *J. Am. Chem. SOC.* **1967,** *89,* **2135-2138.**

Figure **2.** 13C relaxation in **1** (top) and 3 (bottom) by addition of **Cu2+.** Ligand to **Cu2+** ratios of 1000 and **25** are shown for each ligand. All spectra were determined in D₂O with dioxane (67 ppm) as an internal standard.

Figure 3. Plot of log k_{obsd} vs. pH for the amide hydrolysis of $3\text{-}Zn^{2+}\text{-}OH_2$ at **50** 'C. Reaction solutions were **0.4** M in buffer (MES or HEPES) and adjusted to $\mu = 0.5$ M by the addition of NaClO₄. The hydrolyses were followed by monitoring the production of primary amine as determined with an o-phthalaldehyde reagent^{6,7} at 335 nm with a Cary 219 spectrophotometer. Suitable first-order plots were obtained over the entire pH range with correlation coefficients *20.98.*

The low pK_a values for the metal-bound water in Zn^{2+} and Cu^{2+} complexes of 3 are due in part to the coordination environment of the metal ion, which is anticipated to have a five-coordinate geometry¹⁷ comprised of the tridentate 3, an equatorial water, and an axial water. Such a reduction in coordination number is expected to have a pK_a -lowering effect on a metal-bound water.¹⁸ Furthermore, **on** the basis of estimated individual ligand field of the Cu^{2+} complex,¹⁹ only one strong donor ligand is present. Thus, these complexes have the advantage of tridentate chelation that discourages dimerization and disproportionation reactions,²⁰ yet losses of Lewis acidity at the metal ion are minimized due to a five-coordinate geometry that has only one strong donor group.

- **(17) For** clarity, all of the metal complexes **in** this report have **been** drawn without the expected water molecule in the fifth coordination site.
- **(18)** (a) Courtney, R. C.; Gustafson, R. L.; Chaberek, S., Jr.; Martell, A. E. *J. Am. Chem. SOC.* **1958,80, 2121-2128.** (b) Wooley, **P.** *Nature (London)* **1975,258, 677682.** (c) Billo, **E.** J. *Itwra. Nucl. Chem. Lett.* **1975,** *11,* **491-496.**
-
- (19) Billo, E. J. *Inorg. Nucl. Chem. Lett.* 1974, 10, 613–617.
(20) Martell, A. E.; Chaberek, S., Jr.; Courtney, R. C.; Westerback, S.;
Hyytiainen, H. J. Am. Chem. Soc. 1957, 79, 3036–3041.

⁽¹⁶⁾ Titration **of less** than a full equivalent of M-OH2 has also **been** observed by: (a) Hay, R. W.; Morris, P. J. *J. Chem. SOC. A* **1971, 1518-1523.** (b) Brown, R. *S.;* Huguet, J. *Can. J. Chem.* **1980,** *58,* **889-901.** (c) Bertini, **I.;** Canti, G.; Luchinat, C.; Mani, **F.** *Inorg. Chem.* **1981,** *20,* **1670-1673.**

Comparison of the titration data for Zn^{2+} and Cu^{2+} complexes of 1 and 3 reveal an intriguing phenomenon. Although a similar coordination environment is expected in the metal complexes of 1 and 3, a large difference exists in the pK_a of the metal-bound waters. In particular, titrations at 50 °C have previously shown a p K_a of 7.1 for 1-Cu²⁺-OH₂, while a p K_a for 1-Zn²⁺-OH₂ could not be observed due to precipitation.^{$\dot{6}$, $\ddot{ }$ That 1-Cu²⁺-OH₂ and} 3 -Cu²⁺-OH₂ have similar coordination geometries is evidenced by the fact that λ_{max} for each complex is about 735 nm.¹⁹ Thus, the lower pK_a values for the metal-bound water in $\mathbb{Z}n^{2+}$ and Cu^{2+} complexes of 3 must be due in part to factors other than the net Lewis acidity of the metal ion. Differential solvation effects in $1-M^{2+}$ and $3-M^{2+}$ is one attractive explanation since the metalbound water in $3-M^{2+}-OH_2$ may lie in a more hydrophobic environment in the boat conformation of the azalactam than in the chair. Hydrophobic effects have been shown to affect metal-bound water acidity in Zn^{2+} and Cu^{2+} complexes²¹ and have been proposed to account for lowered pK_a for a zinc-bound water in the zinc metalloenzyme carbonic anhydrase.²² An electrophilic interaction of the nearby amide carbonyl in $3-M^{2+}$ -OH₂ with the

(22) (a) Coleman, J. E. Ann. N.Y. Acad. Sci. 1984, 429, 26–48. (b) Lindskog, S. E. In "Zinc Enzymes"; Spiro, T. G., Ed.; Wiley: New York, 1983; Vol. 5. (c) Prince, R. H.; Woolley, P. R. Angew. Chem., Int. Ed. Engl. 1972,

metal-bound water could also lower the pK_a .

In summary, the development here of a Zn^{2+} model complex that exhibits a rate enhancement of 10^7 for Zn^{2+} -promoted amide hydrolysis and a pK_a of 7 for a zinc-bound water offers compelling evidence that a "zinc hydroxide" mechanism is viable in this model system. A similar mechanism should be considered for CPA. Indications that the Glu-270 may assist in the deprotonation of the zinc-bound water in $CPA^{23,24}$ are consistent with this suggestion.

Acknowledgment. Partial support of this work by the National Science Foundation is gratefully acknowledged.

97278-39-2; 3-ZnZ+-OHz, 97278-40-5; **4,** 8 1879-64-3; **5,** 97278-42-7; *6,* 97278-43-8; **6-(bromomethyl)-2-(ethoxycarbonyl)pyridine,** 97278-44-9; proteinase, 9001-92-7. **Registry No. 1-Cu²⁺-OH₂, 69896-33-9; 3, 97278-41-6; 3-Cu²⁺-OH₂,**

Department of Chemistry The University of Michigan Ann Arbor, Michigan 48109 **John T. Groves* James R. Olson**

Received March 4, 1985

Articles

Contribution from the Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Kinetic Study of the Complexing of 2-Aminophenol Derivatives by Nickel(I1)

P. DASGUPTA and R. B. JORDAN*

Received November 19, 1984

The systems 2-aminophenol + $Ni(OH₂₎_{6}^{2+}$ and 2-aminophenol-4-sulfonic acid have been investigated by measuring the ligand acid dissociation constants, monoligand complex formation constants, and the kinetics of complexing for pH 6.4-7.0 in 0.30 M LiClO₄ at 25 °C. The kinetic results indicate that first-bond formation at the OH function is rate limiting with a rate constant of 2.7 **X** 10' M-' **s-I** and 2.9 **X** lo3 **M-' s-'** for 2-aminophenol and **2-aminophenol-4-sulfonate,** respectively. The results are compared and rationalized with respect to earlier studies of salicylate derivatives and acetohydroxamic acid.

A recent kinetic study¹ of the reaction of $Ni(OH₂)₆²⁺$ with salicylate derivatives **(I)** provided information **on** the reactivity

of these systems and the acidity of the coordinated OH. This information should be useful in the interpretation of results **on** 2-aminophenol derivatives **(11),** where the initial reaction site (OH or $NH₂$) is less certain and intramolecular hydrogen bonding might reduce the reactivity of **11.** The dissociative ion-pair mechanism2 would lead one to predict that the anion **I** should react more rapidly than the neutral ligand **11.** As will be seen, the simple formation rate constants are actually in the opposite order because the rate-limiting step is chelate ring closing with I but first-bond formation with **11.**

The complex formation constants with 2-aminophenol and 2-aminophenol-4-sulfonic acid have been measured because the earlier values of Sims³ and Perrin⁴ have been put into question by recent results.⁵

Experimental Section

Materials. 2-Aminophenol (Aldrich Chemical Co.) and 2-aminophenol-4-sulfonic acid (Riedel-de Haenag-Seelze) were recrystallized twice by dissolution in aqueous NaHCO₃ followed by addition of HCl to pH 4, under an argon atmosphere, The solid was collected and dried under vacuum.

Anal. Calcd for 2-aminophenol (C_6H_7NO) : C, 66.04; H, 6.47; N, 12.84. Found: C, 65.90; H, 6.46; N, 12.73. Calcd for 2-aminophenol-4-sulfonic acid hemihydrate $(C_6H_7NO_4S^1/_2H_2O)$: C, 36.40; H, 4.04; N, 7.06. Found: C, 36.16; H, 4.08; N, 6.93.

Aqueous nickel(I1) perchlorate was prepared from nickel carbonate and perchloric acid and standardized as described previously.⁶ The buffers PlPES (Aldrich) and MES (Sigma) were used as supplied.

⁽²¹⁾ Coates, **FH;** Gentle, G. J.; Lincoln, **S.** F. Nature *(London)* **1974,249,** 773-775.

⁽²³⁾ Geoghegan, K. F.; Holmquist, B.; Spilburg, C. **A,;** Vallee, B. L. *Bio* chemistry **1983, 22,** 1847-1852.

⁽²⁴⁾ Nakagawa, *S.;* Umeyama, H.; Kitaura, K.; Morokuma, K. *Chem. Pharm.* Bull. **1981, 29,** 1-6.

⁽¹⁾ Chopra, **S.;** Jordan, R. B. *Inorg. Chem.* **1983, 22,** 1708. (2) WilEns, R. G. *Ace. Chem.* Res. **1970,3,408;** *Pure Appl. Chem.* **1973, 33.** 583.

⁽³⁾ Sims, **P.** *J. Chem. SOC.* **1959,** 3648.

⁽⁴⁾ Perrin, D. D. *J. Chem. Soc.* **1961,** 2244. **(5)** Rola-Szustkiewicz, *Bull. Acad. Pol. Sci., Ser. Sci. Chim.* **1977, 25,** 179.

⁽⁶⁾ Bajue, **S.** A.; Dasgupta, P.; Jordan, R. B.; Lalor, G. C. *Inorg. Chem.* **1985, 24,** 726.