Volume 24

Number 18

August 28, 1985

Inorganic Chemistry

© Copyright 1985 by the American Chemical Society

Communications

Models of Zinc-Containing Proteases. Rapid Amide Hydrolysis by an Unusually Acidic Zn²⁺-OH₂ Complex¹ Sir:

The elucidation of the mechanism of peptide hydrolysis by the zinc metalloenzyme carboxypeptidase A (CPA) has been hampered by an ambiguity in the catalytic role of the Zn^{2+} . The primary function could involve either carbonyl polarization, in which the Zn²⁺ serves as a Lewis acid to bind the carbonyl and to make it more susceptible to nucleophilic attack, or the formation of a zinc-bound hydroxide, which would allow a more potent hydroxide nucleophile to be present at neutral pH.² Zinc-carbonyl mechanisms for CPA have been in favor, since it is this geometry that is present in the 2.0 Å resolution X-ray structure of CPA with the poor substrate Gly-Tyr.³ Further, the kinetic pK_{a} of 6.1-7.0 observed for CPA⁴ has been associated with the deprotonation of Glu-270 rather than the ionization of a zinc-bound water.5

We describe here the synthesis and characterization of a rigid zinc-amide complex in which a zinc-bound water is positioned perpendicular to the plane of an amide bond. Zinc-promoted hydrolysis of the amide bond was observed to occur in this complex with a rate enhancement of 10^7 . Furthermore, both titrimetric and kinetic data indicate a pK_a near 7 for the zinc-bound water.

To assess the viability of a metal-bound hydroxide in amide hydrolysis, we have chosen the specific alignment between the amide and metal-bound hydroxide shown in Figure 1 since this geometry allows a favorable interaction of the reactant groups. Previous Cu^{2+} complexes of 1⁶ and 2,⁷ which incorporate this

1-M2+OH2: X = -CO2 $2-M^{2}-OH_{2} : X = -CH_{2}N(CH_{3})_{2}$

- (a) Presented in part at the 186th National Meeting of the American Chemical Society, Washington, DC, 1983.
 (b) Abstracted from: Olson, J. R. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 1983. Galdes, A. Inorg. Biochem. 1982, J. 268-313. Lipscomb, W. N.; Hartsuck, J. A.; Reeke, G. N., Jr.; Quiocho, F. A.;
- Bethge, P. H.; Ludwig, M. L.; Steitz, T. A.; Muirhead, H.; Coppola, J. C. Brookhaven Symp. Biol. 1968, No. 21, 24-90.
- (a) Auld, D. S.; Vallee, B. L. Biochemistry 1970, 9, 4352-4359. (b) Auld, D. S.; Vallee, B. L. Ibid. 1971, 10, 2892-2897. (c) Bunting, J. W.; Kabir, S. H. Biochem. Biophys. Acta 1978, 527, 98-107.
- (5) Lipscomb, W. N. Tetrahedron 1974, 30, 1725-1732.

Figure 1. Optimum geometry for nucleophilic attack by M-OH on an amide acyl carbon.

Scheme I

geometry in conformationally mobile systems, have led to rate enhancements of up to 10⁶ for amide hydrolysis at neutral pH and 50 °C. More modest accelerations of 103 and no acidic protons were observed for Zn^{2+} . The reaction pathway in these complexes requires a chair-boat equilibrium before the rate-determining step, since an X-ray crystal structure of 1-Cu²⁺-Br·H₂O has shown the azalactam moiety in a chair (C) rather than a boat (B) conformation.⁸

We have synthesized the tridentate ligand 3, as shown in Scheme I,⁹ to eliminate the chair-boat equilibrium from the reaction pathway. The bicyclic azalactam portion of the free ligand is expected to prefer a chair-chair conformation, in analogy with known bicyclo[3.3.1]nonane derivatives.¹⁰ Although 3 can potentially bind a metal ion in a number of geometries, coordination as shown in 3-M²⁺-OH₂ forces the adoption of a boat-chair conformation (B,C) to alleviate severe transannular steric interactions in 3-M²⁺-OH₂(C,C).¹¹ We have compared the selective ¹³C line-broadening effects of added Cu²⁺ to solutions of 1 and 3^{12} and have found that the amide carbonyl carbon of 3 is much

- (6) Groves, J. T.; Dias, R. M. J. Am. Chem. Soc. 1979, 101, 1033-1035.
- (7) Groves, J. T.; Chambers, R. R. J. Am. Chem. Soc. 1984, 106, 630-638.
- (8) Olson, J. R. Ph.D. Thesis, The University of Mchigan, Ann Arbor, MI, 1983
- (9) Intermediates 4, 5, and 6 all gave satisfactory elemental analyses (C, H,N) and spectral properties. Samples of 3 had satisfactory ¹H and ¹³C NMR spectra.
- (10) (a) Peters, J. A.; Baas, J. M. A.; van de Graff, B.; van Bekkem, H. Tetrahedron 1978, 34, 3313-3323. (b) Jeyaraman, R.; Jawaharshingh, C. B.; Avila, S.; Ganapathy, K.; Eliel, E. L.; Manoharan, M.; Morris-Natscke, S. J. Heterocycl. Chem. 1982, 19, 449-458.
- (11) Approximate values for the stability constants of Zn^{2+} and Cu^{2+} complexes with 3 were graphically determined from potentiometric data to be 1.5×10^4 and 7.1×10^5 , respectively.

more sensitive to added Cu²⁺ than the respective carbon of 1 (Figure 2). This is consistent with the proposed solution structures for 1-M²⁺-OH and 3-M²⁺-OH₂, since the distance between the paramagnetic Cu²⁺ and the amide carbonyl is significantly shorter in the latter.

A pH-rate profile for the amide hydrolysis of $3-Zn^{2+}-OH_2$ at 50 °C over the pH range 5.2-7.4 is shown in Figure 3.13 The sigmoidal pH-rate curve is similar to that of $1-Cu^{2+}-OH_2$ and 2-Cu²⁺-OH₂^{6,7} and can be understood in terms of hydrolysis occurring through both a zinc-bound water form (k_1) and a zincbound hydroxide form (k_2) in which 3-Zn²⁺-OH reacts 10 times faster than 3-Zn²⁺-OH₂. The base-catalyzed process (k_3) slightly improves the fit at high pH values^{6,7} although its contribution is small. These processes take the form of eq 1, in which K_{w} is the

$$k_{\text{obsd}} = k_1 \left[\frac{a_{\text{H}}}{K_{\text{app}} + a_{\text{H}}} \right] + k_2 \left[\frac{K_{\text{app}}}{K_{\text{app}} + a_{\text{H}}} \right] + k_3 \frac{K_{\text{w}}}{a_{\text{H}}} \left[\frac{K_{\text{app}}}{K_{\text{app}} + a_{\text{H}}} \right]$$
(1)

autopyrotolysis constant for water ($pK_w = 12.97, 50$ °C, 0.5 M NaClO₄) and K_{app} is the apparent ionization constant required to fit the data. The ratios in brackets represent the mole fractions of the respective zinc species. A least-squares fit of the data to eq 1 gave $k_1 = 6.48 \times 10^{-7} \text{ s}^{-1}$, $k_2 = 7.14 \times 10^{-6} \text{ s}^{-1}$, $k_3 = 1.10$ × 10⁻⁴ M⁻¹ s⁻¹, and $pK_{app} = 7.01$. Comparison of k_{obsd} at pH 7 with the estimated rate constant for the base hydrolysis of 3 at pH 7 ($k = 2.8 \times 10^{-13} \text{ s}^{-1}$)¹⁴ indicated a rate enhancement of 1.4 \times 10⁷ for amide hydrolysis by Zn²⁺ at 50 °C. This is in marked contrast to the small or even inhibitory rate enhancement of model systems that emulate a "carbonyl polarization" geometry between metal ion and amide carbonyl.15

Titrations of the Zn^{2+} and Cu^{2+} complexes of 3 at 50 °C showed two equivalence points, attributable to first the neutralization of two ligand protons and then to the titration of a metal-bound water. The pK_a values for the metal-bound water in 3-Zn²⁺-OH₂ and $3-Cu^{2+}-OH_2$ were found to be extraordinarily low, 7.1 and 6.6, respectively. Furthermore, both titrations were completely reversible. The pK_a of the zinc-bound water must be considered an estimate, however, since the amount of metal-bound water titrated normally corresponded to 0.6-0.8 equiv of base.¹⁶

- (12) For discussion of Cu²⁺ broadening effects, cf: (a) Dillon, K. B.; Rossotti, F. J. C. J. Chem. Soc., Dalton Trans. 1973, 1005-1013. (b) Voelter, W.; Sokolowski, G.; Weber, U.; Weser, U. Eur. J. Biochem. 1975, 58, 159-166. (c) Espersen, W. G.; Martin, R. B. J. Am. Chem. Soc. 1976, 98.40-44
- (13) Amide hydrolysis was also found to occur in homogeneous solutions from pH 7.4 to 7.8. However, unambiguous rate constants could not be calculated in this region due to problems in obtaining reasonable A_{∞} values.
- (14) The pseudo-first-order rate constant k, for the base hydrolysis of 3 at (14) The pseudo-inst-order rate constant k, for the base hydrolysis of 3 at pH 7, was estimated from the second-order base hydrolysis constant (k_{OH} = 2.6 × 10⁻⁷ M⁻¹ s⁻¹) and hydroxide concentration ([OH⁻] = 1.0 × 10⁻⁵⁹⁷ M, pK_w = 12.97, 50 °C, 0.5 M NaClO₄); i.e., k = k_{OH}[OH⁻].
 (15) (a) Fife, T. H.; Squillacote, V. L. J. Am. Chem. Soc. 1977, 99, 3762–3769. (b) Fife, T. H.; Squillacote, V. L. Ibid. 1978, 100, 4787–4793. (c) Tang, C. C. Ph.D. Thesis, Columbia University, 1978. (d) Breslow B: Fairwather R & Keana L L Am. Chem. Soc. 1967.
- (d) Breslow, R.; Fairweather, R.; Keana, J. J. Am. Chem. Soc. 1967, 89, 2135-2138.

Figure 2. ¹³C relaxation in 1 (top) and 3 (bottom) by addition of Cu²⁺. Ligand to Cu²⁺ ratios of 1000 and 25 are shown for each ligand. All spectra were determined in D₂O with dioxane (67 ppm) as an internal standard.

Figure 3. Plot of log k_{obst} vs. pH for the amide hydrolysis of 3-Zn²⁺-OH₂ at 50 °C. Reaction solutions were 0.4 M in buffer (MES or HEPES) and adjusted to $\mu = 0.5$ M by the addition of NaClO₄. The hydrolyses were followed by monitoring the production of primary amine as determined with an o-phthalaldehyde reagent^{6,7} at 335 nm with a Cary 219 spectrophotometer. Suitable first-order plots were obtained over the entire pH range with correlation coefficients ≥ 0.98 .

The low pK_a values for the metal-bound water in Zn^{2+} and Cu^{2+} complexes of 3 are due in part to the coordination environment of the metal ion, which is anticipated to have a five-coordinate geometry¹⁷ comprised of the tridentate 3, an equatorial water, and an axial water. Such a reduction in coordination number is expected to have a pK_a -lowering effect on a metal-bound water.¹⁸ Furthermore, on the basis of estimated individual ligand field of the Cu^{2+} complex, 19 only one strong donor ligand is present. Thus, these complexes have the advantage of tridentate chelation that discourages dimerization and disproportionation reactions,²⁰ yet losses of Lewis acidity at the metal ion are minimized due to a five-coordinate geometry that has only one strong donor group.

- (17) For clarity, all of the metal complexes in this report have been drawn without the expected water molecule in the fifth coordination site.
- (a) Courtney, R. C.; Gustafson, R. L.; Chaberek, S., Jr.; Martell, A. E. J. Am. Chem. Soc. 1958, 80, 2121-2128. (b) Wooley, P. Nature (18)(London) 1975, 258, 677-682. (c) Billo, E. J. Inorg. Nucl. Chem. Lett. **1975**, 11, 491-496.
- (19)
- Billo, E. J. Inorg. Nucl. Chem. Lett. 1974, 10, 613-617. Martell, A. E.; Chaberek, S., Jr.; Courtney, R. C.; Westerback, S.; Hyytiainen, H. J. Am. Chem. Soc. 1957, 79, 3036-3041. (20)

Titration of less than a full equivalent of M-OH₂ has also been observed (16)by: (a) Hay, R. W.; Morris, P. J. J. Chem. Soc. A 1971, 1518–1523.
(b) Brown, R. S.; Huguet, J. Can. J. Chem. 1980, 58, 889–901. (c) Bertini, I.; Canti, G.; Luchinat, C.; Mani, F. Inorg. Chem. 1981, 20, 1670-1673.

Comparison of the titration data for Zn²⁺ and Cu²⁺ complexes of 1 and 3 reveal an intriguing phenomenon. Although a similar coordination environment is expected in the metal complexes of 1 and 3, a large difference exists in the pK_a of the metal-bound waters. In particular, titrations at 50 °C have previously shown a p K_a of 7.1 for 1-Cu²⁺-OH₂, while a p K_a for 1-Zn²⁺-OH₂ could not be observed due to precipitation.^{6,7} That 1-Cu²⁺-OH₂ and 3-Cu²⁺-OH₂ have similar coordination geometries is evidenced by the fact that λ_{max} for each complex is about 735 nm.¹⁹ Thus, the lower pK_a values for the metal-bound water in Zn^{2+} and Cu^{2+} complexes of 3 must be due in part to factors other than the net Lewis acidity of the metal ion. Differential solvation effects in $1-M^{2+}$ and $3-M^{2+}$ is one attractive explanation since the metalbound water in 3-M²⁺-OH₂ may lie in a more hydrophobic environment in the boat conformation of the azalactam than in the chair. Hydrophobic effects have been shown to affect metal-bound water acidity in Zn²⁺ and Cu²⁺ complexes²¹ and have been proposed to account for lowered pK_a for a zinc-bound water in the zinc metalloenzyme carbonic anhydrase.²² An electrophilic interaction of the nearby amide carbonyl in 3-M²⁺-OH₂ with the

(a) Coleman, J. E. Ann. N.Y. Acad. Sci. **1984**, 429, 26-48. (b) Lindskog, S. E. In "Zinc Enzymes"; Spiro, T. G., Ed.; Wiley: New York, 1983; Vol. 5. (c) Prince, R. H.; Woolley, P. R. Angew. Chem., (22)Int. Ed. Engl. 1972, 11, 408-417.

metal-bound water could also lower the pK_a .

In summary, the development here of a Zn^{2+} model complex that exhibits a rate enhancement of 107 for Zn2+-promoted amide hydrolysis and a pK_a of 7 for a zinc-bound water offers compelling evidence that a "zinc hydroxide" mechanism is viable in this model system. A similar mechanism should be considered for CPA. Indications that the Glu-270 may assist in the deprotonation of the zinc-bound water in $CPA^{23,24}$ are consistent with this suggestion.

Acknowledgment. Partial support of this work by the National Science Foundation is gratefully acknowledged.

Registry No. 1-Cu²⁺-OH₂, 69896-33-9; 3, 97278-41-6; 3-Cu²⁺-OH₂, 97278-39-2; 3-Zn2+-OH2, 97278-40-5; 4, 81879-64-3; 5, 97278-42-7; 6, 97278-43-8; 6-(bromomethyl)-2-(ethoxycarbonyl)pyridine, 97278-44-9; proteinase, 9001-92-7.

John T. Groves* Department of Chemistry The University of Michigan James R. Olson Ann Arbor, Michigan 48109

Received March 4. 1985

Articles

Contribution from the Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Kinetic Study of the Complexing of 2-Aminophenol Derivatives by Nickel(II)

P. DASGUPTA and R. B. JORDAN*

Received November 19, 1984

The systems 2-aminophenol + Ni $(OH_2)_{\delta}^{2+}$ and 2-aminophenol-4-sulfonic acid have been investigated by measuring the ligand acid dissociation constants, monoligand complex formation constants, and the kinetics of complexing for pH 6.4-7.0 in 0.30 M LiClO4 at 25 °C. The kinetic results indicate that first-bond formation at the OH function is rate limiting with a rate constant of 2.7×10^3 M⁻¹ s⁻¹ and 2.9×10^3 M⁻¹ s⁻¹ for 2-aminophenol and 2-aminophenol-4-sulfonate, respectively. The results are compared and rationalized with respect to earlier studies of salicylate derivatives and acetohydroxamic acid.

A recent kinetic study¹ of the reaction of $Ni(OH_2)_6^{2+}$ with salicylate derivatives (I) provided information on the reactivity

of these systems and the acidity of the coordinated OH. This information should be useful in the interpretation of results on 2-aminophenol derivatives (II), where the initial reaction site (OH or NH₂) is less certain and intramolecular hydrogen bonding might reduce the reactivity of II. The dissociative ion-pair mechanism² would lead one to predict that the anion I should react more rapidly than the neutral ligand II. As will be seen, the simple formation rate constants are actually in the opposite order because the rate-limiting step is chelate ring closing with I but first-bond formation with II.

Chopra, S.; Jordan, R. B. Inorg. Chem. 1983, 22, 1708. Wilkins, R. G. Acc. Chem. Res. 1970, 3, 408; Pure Appl. Chem. 1973, (2)33, 583.

The complex formation constants with 2-aminophenol and 2-aminophenol-4-sulfonic acid have been measured because the earlier values of Sims³ and Perrin⁴ have been put into question by recent results.5

Experimental Section

Materials. 2-Aminophenol (Aldrich Chemical Co.) and 2-aminophenol-4-sulfonic acid (Riedel-de Haenag-Seelze) were recrystallized twice by dissolution in aqueous NaHCO3 followed by addition of HCl to pH 4, under an argon atmosphere. The solid was collected and dried under vacuum.

Anal. Calcd for 2-aminophenol (C₆H₇NO): C, 66.04; H, 6.47; N, 12.84. Found: C, 65.90; H, 6.46; N, 12.73. Calcd for 2-aminophenol-4-sulfonic acid hemihydrate ($C_6H_7NO_4S^{-1}/_2H_2O$): C, 36.40; H, 4.04; N, 7.06. Found: C, 36.16; H, 4.08; N, 6.93.

Aqueous nickel(II) perchlorate was prepared from nickel carbonate and perchloric acid and standardized as described previously.⁶ The buffers PIPES (Aldrich) and MES (Sigma) were used as supplied.

Coates, J. H.; Gentle, G. J.; Lincoln, S. F. Nature (London) 1974, 249, (21) 773-775

⁽²³⁾ Geoghegan, K. F.; Holmquist, B.; Spilburg, C. A.; Vallee, B. L. Biochemistry 1983, 22, 1847-1852.

⁽²⁴⁾ Nakagawa, S.; Umeyama, H.; Kitaura, K.; Morokuma, K. Chem. Pharm. Bull. 1981, 29, 1-6.

Sims, P. J. Chem. Soc. 1959, 3648. (3)

Perrin, D. D. J. Chem. Soc. 1961, 2244. (4)

Rola-Szustkiewicz, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1977, 25, 179. (5)

Bajue, S. A.; Dasgupta, P.; Jordan, R. B.; Lalor, G. C. Inorg. Chem. 1985, 24, 726. (6)